2000 character limit reached
Congruences for Andrews' spt-function modulo powers of 5, 7 and 13 (1011.1955v1)
Published 9 Nov 2010 in math.NT
Abstract: Congruences are found modulo powers of 5, 7 and 13 for Andrews' smallest parts partition function spt(n). These congruences are reminiscent of Ramanujan's partition congruences modulo powers of 5, 7 and 11. Recently, Ono proved explicit Ramanujan-type congruences for spt(n) modulo p for all primes p>3 which were conjectured earlier by the author. We extend Ono's method to handle the powers of 5, 7 and 13 congruences. We need the theory of weak Maass forms as well as certain classical modular equations for the Dedekind eta-function.