Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Arithmetics in numeration systems with negative quadratic base (1011.1403v1)

Published 5 Nov 2010 in math.NT and cs.DM

Abstract: We consider positional numeration system with negative base $-\beta$, as introduced by Ito and Sadahiro. In particular, we focus on arithmetical properties of such systems when $\beta$ is a quadratic Pisot number. We study a class of roots $\beta>1$ of polynomials $x2-mx-n$, $m\geq n\geq 1$, and show that in this case the set ${\rm Fin}(-\beta)$ of finite $(-\beta)$-expansions is closed under addition, although it is not closed under subtraction. A particular example is $\beta=\tau=\frac12(1+\sqrt5)$, the golden ratio. For such $\beta$, we determine the exact bound on the number of fractional digits appearing in arithmetical operations. We also show that the set of $(-\tau)$-integers coincides on the positive half-line with the set of $(\tau2)$-integers.

Citations (4)

Summary

We haven't generated a summary for this paper yet.