Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Structure of finite nilspaces and inverse theorems for the Gowers norms in bounded exponent groups (1011.1057v1)

Published 4 Nov 2010 in math.CO

Abstract: A result of the author shows that the behavior of Gowers norms on bounded exponent abelian groups is connected to finite nilspaces. Motivated by this, we investigate the structure of finite nilspaces. As an application we prove inverse theorems for the Gowers norms on bounded exponent abelian groups. It says roughly speaking that if a function on A has non negligible U(k+1)-norm then it correlates with a phase polynomial of degree k when lifted to some abelian group extension of A. This result is closely related to a conjecture by Tao and Ziegler. In prticular we obtain a new proof for the Tao-Ziegler inverse theorem.

Summary

We haven't generated a summary for this paper yet.