Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Networks of Stochastic Differential Equations (1011.0415v1)

Published 1 Nov 2010 in math.ST, cond-mat.stat-mech, cs.IT, cs.LG, math.IT, and stat.TH

Abstract: We consider linear models for stochastic dynamics. To any such model can be associated a network (namely a directed graph) describing which degrees of freedom interact under the dynamics. We tackle the problem of learning such a network from observation of the system trajectory over a time interval $T$. We analyze the $\ell_1$-regularized least squares algorithm and, in the setting in which the underlying network is sparse, we prove performance guarantees that are \emph{uniform in the sampling rate} as long as this is sufficiently high. This result substantiates the notion of a well defined `time complexity' for the network inference problem.

Citations (72)

Summary

We haven't generated a summary for this paper yet.