Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating a periodicity parameter in the drift of a time inhomogeneous diffusion (1010.5105v1)

Published 25 Oct 2010 in math.ST, math.PR, and stat.TH

Abstract: We consider a diffusion $(\xi_t)_{t\ge 0}$ whose drift contains some deterministic periodic signal. Its shape being fixed and known, up to scaling in time, the periodicity of the signal is the unknown parameter $\vartheta$ of interest. We consider sequences of local models at $\vartheta$, corresponding to continuous observation of the process $\xi$ on the time interval $[0,n]$ as $n\to\infty$, with suitable choice of local scale at $\vartheta$. Our tools --under an ergodicity condition-- are path segments of $\xi$ corresponding to the period $\vartheta$, and limit theorems for certain functionals of the process $\xi$ which are not additive functionals. When the signal is smooth, with local scale $n{-3/2}$ at $\vartheta$, we have local asymptotic normality (LAN) in the sense of Le Cam (1969). When the signal has a finite number of discontinuities, with local scale $n{-2}$ at $\vartheta$, we obtain a limit experiment of different type, studied by Ibragimov and Khasminskii (1981), where smoothness of the parametrization (in the sense of Hellinger distance) is H\"older $\frac12$.

Summary

We haven't generated a summary for this paper yet.