Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On using shadow prices in portfolio optimization with transaction costs (1010.4989v1)

Published 21 Oct 2010 in q-fin.CP, math.PR, and q-fin.PM

Abstract: In frictionless markets, utility maximization problems are typically solved either by stochastic control or by martingale methods. Beginning with the seminal paper of Davis and Norman [Math. Oper. Res. 15 (1990) 676--713], stochastic control theory has also been used to solve various problems of this type in the presence of proportional transaction costs. Martingale methods, on the other hand, have so far only been used to derive general structural results. These apply the duality theory for frictionless markets typically to a fictitious shadow price process lying within the bid-ask bounds of the real price process. In this paper, we show that this dual approach can actually be used for both deriving a candidate solution and verification in Merton's problem with logarithmic utility and proportional transaction costs. In particular, we determine the shadow price process.

Summary

We haven't generated a summary for this paper yet.