Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hydrodynamical behavior of symmetric exclusion with slow bonds (1010.4769v2)

Published 22 Oct 2010 in math.PR, math-ph, math.AP, and math.MP

Abstract: We consider the exclusion process in the one-dimensional discrete torus with $N$ points, where all the bonds have conductance one, except a finite number of slow bonds, with conductance $N{-\beta}$, with $\beta\in[0,\infty)$. We prove that the time evolution of the empirical density of particles, in the diffusive scaling, has a distinct behavior according to the range of the parameter $\beta$. If $\beta\in [0,1)$, the hydrodynamic limit is given by the usual heat equation. If $\beta=1$, it is given by a parabolic equation involving an operator $\frac{d}{dx}\frac{d}{dW}$, where $W$ is the Lebesgue measure on the torus plus the sum of the Dirac measure supported on each macroscopic point related to the slow bond. If $\beta\in(1,\infty)$, it is given by the heat equation with Neumann's boundary conditions, meaning no passage through the slow bonds in the continuum.

Summary

We haven't generated a summary for this paper yet.