Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hedonic Coalition Formation for Distributed Task Allocation among Wireless Agents (1010.4499v1)

Published 21 Oct 2010 in cs.IT, cs.GT, and math.IT

Abstract: Autonomous wireless agents such as unmanned aerial vehicles or mobile base stations present a great potential for deployment in next-generation wireless networks. While current literature has been mainly focused on the use of agents within robotics or software applications, we propose a novel usage model for self-organizing agents suited to wireless networks. In the proposed model, a number of agents are required to collect data from several arbitrarily located tasks. Each task represents a queue of packets that require collection and subsequent wireless transmission by the agents to a central receiver. The problem is modeled as a hedonic coalition formation game between the agents and the tasks that interact in order to form disjoint coalitions. Each formed coalition is modeled as a polling system consisting of a number of agents which move between the different tasks present in the coalition, collect and transmit the packets. Within each coalition, some agents can also take the role of a relay for improving the packet success rate of the transmission. The proposed algorithm allows the tasks and the agents to take distributed decisions to join or leave a coalition, based on the achieved benefit in terms of effective throughput, and the cost in terms of delay. As a result of these decisions, the agents and tasks structure themselves into independent disjoint coalitions which constitute a Nash-stable network partition. Moreover, the proposed algorithm allows the agents and tasks to adapt the topology to environmental changes such as the arrival/removal of tasks or the mobility of the tasks. Simulation results show how the proposed algorithm improves the performance, in terms of average player (agent or task) payoff, of at least 30.26% (for a network of 5 agents with up to 25 tasks) relatively to a scheme that allocates nearby tasks equally among agents.

Citations (126)

Summary

We haven't generated a summary for this paper yet.