Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New series for some special values of $L$-functions (1010.4298v7)

Published 20 Oct 2010 in math.NT, math.CA, math.CO, and math.NA

Abstract: Dirichlet's $L$-functions are natural extensions of the Riemann zeta function. In this paper we first give a brief survey of Ap\'ery-like series for some special values of the zeta function and certain $L$-functions. Then, we establish two theorems on transformations of certain kinds of congruences. Motivated by the results and based on our computation, we pose 48 new conjectural series (most of which involve harmonic numbers) for such special values and related constants. For example, we conjecture that \begin{align*}\sum_{k=1}\infty\frac1{k4\binom{2k}k}\bigg(\frac1k+\sum_{j=k}{2k}\frac1j\bigg)=&\frac{11}9\zeta(5), \\sum_{k=1}\infty\frac{(-1){k-1}}{k3\binom{2k}k}\bigg(\frac1{5k3}+\sum_{j=1}{k}\frac1{j3}\bigg)=&\frac{2}5\zeta(3)2, \end{align*} and $$\sum_{k=1}\infty\frac{48k}{k(2k-1)\binom{4k}{2k}\binom{2k}k}=\frac{15}2\sum_{k=1}\infty\frac{(\frac k3)}{k2},$$ where $(\frac k3)$ denotes the Legendre symbol.

Summary

We haven't generated a summary for this paper yet.