Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Partitions of metric spaces with finite distance sets (1010.4212v2)

Published 20 Oct 2010 in math.CO, math.DS, and math.FA

Abstract: A metric space $\mathrm{M}=(M,\de)$ is {\em indivisible} if for every colouring $\chi: M\to 2$ there exists $i\in 2$ and a copy $\mathrm{N}=(N, \de)$ of $\mathrm{M}$ in $\mathrm{M}$ so that $\chi(x)=i$ for all $x\in N$. The metric space $\mathrm{M}$ is {\em homogeneus} if for every isometry $\alpha$ of a finite subspace of $\mathrm{M}$ to a subspace of $\mathrm{M}$ there exists an isometry of $\mathrm{M}$ onto $\mathrm{M}$ extending $\alpha$. A homogeneous metric space $\mathrm{U}$ with set of distances $\mathcal{D}$ is an Urysohn metric space if every finite metric space with set of distances a subset of $\mathcal{D}$ has an isometry into $\mathrm{U}$. The main result of this paper states that all countable Urysohn metric spaces with a finite set of distances are indivisible.

Summary

We haven't generated a summary for this paper yet.