2000 character limit reached
Quantum Schur Superalgebras and Kazhdan-Lusztig Combinatorics (1010.3800v1)
Published 19 Oct 2010 in math.QA
Abstract: We introduce the notion of quantum Schur (or $q$-Schur) superalgebras. These algebras share certain nice properties with $q$-Schur algebras such as base change property, existence of canonical $\mathbb Z[v,v{-1}]$-bases, and the duality relation with quantum matrix superalgebra $\sA(m|n)$. We also construct a cellular $\mathbb Q(\up)$-basis and determine its associated cells, called super-cells, in terms of a Robinson--Schensted--Knuth super-correspondence. In this way, we classify all irreducible representations over $\mathbb Q(\up)$ via super-cell modules.