Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rigidity of Polyhedral Surfaces, III (1010.3284v1)

Published 15 Oct 2010 in math.GT and math.DG

Abstract: This paper investigates several global rigidity issues for polyhedral surfaces including inversive distance circle packings. Inversive distance circle packings are polyhedral surfaces introduced by P. Bowers and K. Stephenson as a generalization of Andreev-Thurston's circle packing. They conjectured that inversive distance circle packings are rigid. Using a recent work of R. Guo on variational principle associated to the inversive distance circle packing, we prove rigidity conjecture of Bowers-Stephenson in this paper. We also show that each polyhedral metric on a triangulated surface is determined by various discrete curvatures introduced in our previous work, verifying a conjecture in \cite{Lu1}. As a consequence, we show that the discrete Laplacian operator determines a Euclidean polyhedral metric up to scaling.

Summary

We haven't generated a summary for this paper yet.