Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A remark on normal forms and the "upside-down" I-method for periodic NLS: growth of higher Sobolev norms (1010.2501v2)

Published 12 Oct 2010 in math.AP and math.DS

Abstract: We study growth of higher Sobolev norms of solutions to the one-dimensional periodic nonlinear Schrodinger equation (NLS). By a combination of the normal form reduction and the upside-down I-method, we establish |u(t)|_{Hs} \lesssim (1+|t|){\alpha (s-1)+} with \alpha = 1 for a general power nonlinearity. In the quintic case, we obtain the above estimate with \alpha = 1/2 via the space-time estimate due to Bourgain [4], [5]. In the cubic case, we concretely compute the terms arising in the first few steps of the normal form reduction and prove the above estimate with \alpha = 4/9. These results improve the previously known results (except for the quintic case.) In Appendix, we also show how Bourgain's idea in [4] on the normal form reduction for the quintic nonlinearity can be applied to other powers.

Summary

We haven't generated a summary for this paper yet.