Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Sensor Network Localization Using SDP Relaxation (1010.2262v4)

Published 11 Oct 2010 in math.MG, cs.DS, and math.OC

Abstract: A Semidefinite Programming (SDP) relaxation is an effective computational method to solve a Sensor Network Localization problem, which attempts to determine the locations of a group of sensors given the distances between some of them [11]. In this paper, we analyze and determine new sufficient conditions and formulations that guarantee that the SDP relaxation is exact, i.e., gives the correct solution. These conditions can be useful for designing sensor networks and managing connectivities in practice. Our main contribution is twofold: We present the first non-asymptotic bound on the connectivity or radio range requirement of the sensors in order to ensure the network is uniquely localizable. Determining this range is a key component in the design of sensor networks, and we provide a result that leads to a correct localization of each sensor, for any number of sensors. Second, we introduce a new class of graphs that can always be correctly localized by an SDP relaxation. Specifically, we show that adding a simple objective function to the SDP relaxation model will ensure that the solution is correct when applied to a triangulation graph. Since triangulation graphs are very sparse, this is informationally efficient, requiring an almost minimal amount of distance information. We also analyze a number objective functions for the SDP relaxation to solve the localization problem for a general graph.

Citations (9)

Summary

We haven't generated a summary for this paper yet.