Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Embeddings of finite-dimensional compacta in Euclidean spaces (1010.1892v2)

Published 10 Oct 2010 in math.GN

Abstract: If $g$ is a map from a space $X$ into $\mathbb Rm$ and $q$ is an integer, let $B_{q,d,m}(g)$ be the set of all lines $\Pid\subset\mathbb Rm$ such that $|g{-1}(\Pid)|\geq q$. Let also $\mathcal H(q,d,m,k)$ denote the maps $g\colon X\to\mathbb Rm$ such that $\dim B_{q,d,m}(g)\leq k$. We prove that for any $n$-dimensional metric compactum $X$ each of the sets $\mathcal H(3,1,m,3n+1-m)$ and $\mathcal H(2,1,m,2n)$ is dense and $G_\delta$ in the function space $C(X,\mathbb Rm)$ provided $m\geq 2n+1$ (in this case $\mathcal H(3,1,m,3n+1-m)$ and $\mathcal H(2,1,m,2n)$ can consist of embeddings). The same is true for the sets $\mathcal H(1,d,m,n+d(m-d))\subset C(X,\mathbb Rm)$ if $m\geq n+d$, and $\mathcal H(4,1,3,0)\subset C(X,\mathbb R3)$ if $\dim X\leq 1$.

Summary

We haven't generated a summary for this paper yet.