Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On continuity of measurable group representations and homomorphisms (1010.0999v3)

Published 5 Oct 2010 in math.FA and math.GN

Abstract: Let G be a locally compact group, and let U be its unitary representation on a Hilbert space H. Endow the space L(H) of linear bounded operators on H with weak operator topology. We prove that if U is a measurable map from G to L(H) then it is continuous. This result was known before for separable H. To prove this, we generalize a known theorem on nonmeasuralbe unions of point finite families of null sets. We prove also that the following statement is consistent with ZFC: every measurable homomorphism from a locally compact group into any topological group is continuous. This relies, in turn, on the following theorem: it is consistent with ZFC that for every null set S in a locally compact group there is a set A such that AS is non-measurable.

Summary

We haven't generated a summary for this paper yet.