Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Three-dimensional rogue waves in non-stationary parabolic potentials (1010.0497v1)

Published 4 Oct 2010 in nlin.SI, math-ph, math.AP, math.MP, nlin.PS, and physics.class-ph

Abstract: Using symmetry analysis we systematically present a higher-dimensional similarity transformation reducing the (3+1)-dimensional inhomogeneous nonlinear Schrodinger (NLS) equation with variable coefficients and parabolic potential to the (1+1)-dimensional NLS equation with constant coefficients. This transformation allows us to relate certain class of localized exact solutions of the (3+1)-dimensional case to the variety of solutions of integrable NLS equation of (1+1)-dimensional case. As an example, we illustrated our technique using two lowest order rational solutions of the NLS equation as seeding functions to obtain rogue wave-like solutions localized in three dimensions that have complicated evolution in time including interactions between two time-dependent rogue wave solutions. The obtained three-dimensional rogue wave-like solutions may raise the possibility of relative experiments and potential applications in nonlinear optics and BECs.

Summary

We haven't generated a summary for this paper yet.