Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

U-Processes, U-Quantile Processes and Generalized Linear Statistics of Dependent Data (1009.5337v4)

Published 27 Sep 2010 in math.ST, math.PR, and stat.TH

Abstract: Generalized linear statistics are an unifying class that contains U-statistics, U-quantiles, L-statistics as well as trimmed and winsorized U-statistics. For example, many commonly used estimators of scale fall into this class. GL-statistics only have been studied under independence; in this paper, we develop an asymptotic theory for GL-statistics of sequences which are strongly mixing or L1 near epoch dependent on an absolutely regular process. For this purpose, we prove an almost sure approximation of the empirical U-process by a Gaussian process. With the help of a generalized Bahadur representation, it follows that such a strong invariance principle also holds for the empirical U-quantile process and consequently for GL-statistics. We obtain central limit theorems and laws of the iterated logarithm for U-processes, U-quantile processes and GL-statistics as straightforward corollaries.

Summary

We haven't generated a summary for this paper yet.