Papers
Topics
Authors
Recent
Search
2000 character limit reached

Covariant Quantum Fields on Noncommutative Spacetimes

Published 26 Sep 2010 in hep-th, gr-qc, math-ph, math.MP, and math.QA | (1009.5136v1)

Abstract: A spinless covariant field $\phi$ on Minkowski spacetime $\M{d+1}$ obeys the relation $U(a,\Lambda)\phi(x)U(a,\Lambda){-1}=\phi(\Lambda x+a)$ where $(a,\Lambda)$ is an element of the Poincar\'e group $\Pg$ and $U:(a,\Lambda)\to U(a,\Lambda)$ is its unitary representation on quantum vector states. It expresses the fact that Poincar\'e transformations are being unitary implemented. It has a classical analogy where field covariance shows that Poincar\'e transformations are canonically implemented. Covariance is self-reproducing: products of covariant fields are covariant. We recall these properties and use them to formulate the notion of covariant quantum fields on noncommutative spacetimes. In this way all our earlier results on dressing, statistics, etc. for Moyal spacetimes are derived transparently. For the Voros algebra, covariance and the *-operation are in conflict so that there are no covariant Voros fields compatible with *, a result we found earlier. The notion of Drinfel'd twist underlying much of the preceding discussion is extended to discrete abelian and nonabelian groups such as the mapping class groups of topological geons. For twists involving nonabelian groups the emergent spacetimes are nonassociative.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.