Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast escaping points of entire functions (1009.5081v1)

Published 26 Sep 2010 in math.CV and math.DS

Abstract: Let $f$ be a transcendental entire function and let $A(f)$ denote the set of points that escape to infinity as fast as possible' under iteration. By writing $A(f)$ as a countable union of closed sets, calledlevels' of $A(f)$, we obtain a new understanding of the structure of this set. For example, we show that if $U$ is a Fatou component in $A(f)$, then $\partial U\subset A(f)$ and this leads to significant new results and considerable improvements to existing results about $A(f)$. In particular, we study functions for which $A(f)$, and each of its levels, has the structure of an `infinite spider's web'. We show that there are many such functions and that they have a number of strong dynamical properties. This new structure provides an unexpected connection between a conjecture of Baker concerning the components of the Fatou set and a conjecture of Eremenko concerning the components of the escaping set.

Summary

We haven't generated a summary for this paper yet.