Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantifying Information Leakage in Finite Order Deterministic Programs (1009.3951v1)

Published 20 Sep 2010 in cs.CR, cs.IT, and math.IT

Abstract: Information flow analysis is a powerful technique for reasoning about the sensitive information exposed by a program during its execution. While past work has proposed information theoretic metrics (e.g., Shannon entropy, min-entropy, guessing entropy, etc.) to quantify such information leakage, we argue that some of these measures not only result in counter-intuitive measures of leakage, but also are inherently prone to conflicts when comparing two programs P1 and P2 -- say Shannon entropy predicts higher leakage for program P1, while guessing entropy predicts higher leakage for program P2. This paper presents the first attempt towards addressing such conflicts and derives solutions for conflict-free comparison of finite order deterministic programs.

Citations (8)

Summary

We haven't generated a summary for this paper yet.