Pullback of parabolic bundles and covers of ${\mathbb P}^1\setminus\{0,1,\infty\}$
Abstract: We work over an algebraically closed ground field of characteristic zero. A $G$-cover of ${\mathbb P}1$ ramified at three points allows one to assign to each finite dimensional representation $V$ of $G$ a vector bundle $\oplus \mathscr{O}(s_i)$ on ${\mathbb P}1$ with parabolic structure at the ramification points. This produces a tensor functor from representation of $G$ to vector bundles with parabolic structure that characterises the original cover. This work attempts to describe this tensor functor in terms of group theoretic data. More precisely, we construct a pullback functor on vector bundles with parabolic structure and describe the parabolic pullback of the previously described tensor functor.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.