Papers
Topics
Authors
Recent
Search
2000 character limit reached

Model Structures on Exact Categories

Published 18 Sep 2010 in math.AT | (1009.3574v1)

Abstract: We define model structures on exact categories which we call exact model structures. We look at the relationship between these model structures and cotorsion pairs on the exact category. In particular, when the underlying category is weakly idempotent complete we get Hovey's one-to-one correspondence between model structures and complete cotorsion pairs. We classify the right and left homotopy relation in terms of the cotorsion pairs and look at examples of exact model structures. In particular, we see that given any hereditary abelian model category, the full subcategories of cofibrant, fibrant and cofibrant-fibrant subobjects each have natural exact model structures equivalent to the original model structure. These model structures each have interesting characteristics. For example, the cofibrant-fibrant subobjects form a Frobenius category whose stable category is the same thing as the homotopy category of its model structure.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.