2000 character limit reached
M. Kontsevich's graph complex and the Grothendieck-Teichmueller Lie algebra (1009.1654v4)
Published 8 Sep 2010 in math.QA
Abstract: We show that the zeroth cohomology of M. Kontsevich's graph complex is isomorphic to the Grothendieck-Teichmueller Lie algebra grt_1. The map is explicitly described. This result has applications to deformation quantization and Duflo theory. We also compute the homotopy derivations of the Gerstenhaber operad. They are parameterized by grt_1, up to one class (or two, depending on the definitions). More generally, the homotopy derivations of the (non-unital) E_n operads may be expressed through the cohomology of a suitable graph complex. Our methods also give a second proof of a result of H. Furusho, stating that the pentagon equation for grt_1-elements implies the hexagon equation.