Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bernstein von Mises Theorems for Gaussian Regression with increasing number of regressors (1009.1370v3)

Published 7 Sep 2010 in math.ST and stat.TH

Abstract: This paper brings a contribution to the Bayesian theory of nonparametric and semiparametric estimation. We are interested in the asymptotic normality of the posterior distribution in Gaussian linear regression models when the number of regressors increases with the sample size. Two kinds of Bernstein-von Mises Theorems are obtained in this framework: nonparametric theorems for the parameter itself, and semiparametric theorems for functionals of the parameter. We apply them to the Gaussian sequence model and to the regression of functions in Sobolev and $C{\alpha}$ classes, in which we get the minimax convergence rates. Adaptivity is reached for the Bayesian estimators of functionals in our applications.

Summary

We haven't generated a summary for this paper yet.