Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Level Sets of the Takagi Function: Local Level Sets (1009.0855v7)

Published 4 Sep 2010 in math.CA

Abstract: The Takagi function \tau : [0, 1] \to [0, 1] is a continuous non-differentiable function constructed by Takagi in 1903. The level sets L(y) = {x : \tau(x) = y} of the Takagi function \tau(x) are studied by introducing a notion of local level set into which level sets are partitioned. Local level sets are simple to analyze, reducing questions to understanding the relation of level sets to local level sets, which is more complicated. It is known that for a "generic" full Lebesgue measure set of ordinates y, the level sets are finite sets. Here it is shown for a "generic" full Lebesgue measure set of abscissas x, the level set L(\tau(x)) is uncountable. An interesting singular monotone function is constructed, associated to local level sets, and is used to show the expected number of local level sets at a random level y is exactly 3/2.

Summary

We haven't generated a summary for this paper yet.