Papers
Topics
Authors
Recent
2000 character limit reached

On generalized Frame-Stewart numbers

Published 1 Sep 2010 in math.NT and cs.DM | (1009.0146v2)

Abstract: For the multi-peg Tower of Hanoi problem with $k \geqslant 4$ pegs, so far the best solution is obtained by the Stewart's algorithm based on the the following recurrence relation: $\mathrm{S}_k(n)=\min_{1 \leqslant t \leqslant n} \left{2 \cdot \mathrm{S}_k(n-t) + \mathrm{S}_{k-1}(t)\right}$, $\mathrm{S}_3(n) = 2n -- 1$. In this paper, we generalize this recurrence relation to $\mathrm{G}_k(n) = \min_{1\leqslant t\leqslant n}\left{ p_k\cdot \mathrm{G}_k(n-t) + q_k\cdot \mathrm{G}_{k-1}(t) \right}$, $\mathrm{G}_3(n) = p_3\cdot \mathrm{G}_3(n-1) + q_3$, for two sequences of arbitrary positive integers $\left(p_i\right)_{i \geqslant 3}$ and $\left(q_i\right)_{i \geqslant 3}$ and we show that the sequence of differences $\left(\mathrm{G}_k(n)- \mathrm{G}_k(n-1)\right)_{n \geqslant 1}$ consists of numbers of the form $\left(\prod_{i=3}{k}q_i\right) \cdot \left(\prod_{i=3}{k}{p_i}{\alpha_i}\right)$, with $\alpha_i\geqslant 0$ for all $i$, arranged in nondecreasing order. We also apply this result to analyze recurrence relations for the Tower of Hanoi problems on several graphs.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.