Papers
Topics
Authors
Recent
Search
2000 character limit reached

The Wronski map and shifted tableau theory

Published 31 Aug 2010 in math.AG and math.CO | (1009.0035v2)

Abstract: The Mukhin-Tarasov-Varchenko Theorem, conjectured by B. and M. Shapiro, has a number of interesting consequences. Among them is a well-behaved correspondence between certain points on a Grassmannian - those sent by the Wronski map to polynomials with only real roots - and (dual equivalence classes of) Young tableaux. In this paper, we restrict this correspondence to the orthogonal Grassmannian OG(n,2n+1) inside Gr(n,2n+1). We prove that a point lies on OG(n,2n+1) if and only if the corresponding tableau has a certain type of symmetry. From this we recover much of the theory of shifted tableaux for Schubert calculus on OG(n,2n+1), including a new, geometric proof of the Littlewood-Richardson rule for OG(n,2n+1).

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.