Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the operator-valued analogues of the semicircle, arcsine and Bernoulli laws (1008.5205v2)

Published 31 Aug 2010 in math.OA

Abstract: We study of the connection between operator valued central limits for monotone, Boolean and free probability theory, which we shall call the arcsine, Bernoulli and semicircle distributions, respectively. In scalar-valued non-commutative probability these measures are known to satisfy certain arithmetic relations with respect to Boolean and free convolutions. We show that generally the corresponding operator-valued distributions satisfy the same relations only when we consider them in the fully matricial sense introduced by Voiculescu. In addition, we provide a combinatorial description in terms of moments of the operator valued arcsine distribution and we show that its reciprocal Cauchy transform satisfies a version of the Abel equation similar to the one satisfied in the scalar-valued case.

Summary

We haven't generated a summary for this paper yet.