Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The noncommutative geometry of Yang-Mills fields (1008.5101v1)

Published 30 Aug 2010 in math-ph, hep-th, and math.MP

Abstract: We generalize to topologically non-trivial gauge configurations the description of the Einstein-Yang-Mills system in terms of a noncommutative manifold, as was done previously by Chamseddine and Connes. Starting with an algebra bundle and a connection thereon, we obtain a spectral triple, a construction that can be related to the internal Kasparov product in unbounded KK-theory. In the case that the algebra bundle is an endomorphism bundle, we construct a PSU(N)-principal bundle for which it is an associated bundle. The so-called internal fluctuations of the spectral triple are parametrized by connections on this principal bundle and the spectral action gives the Yang-Mills action for these gauge fields, minimally coupled to gravity. Finally, we formulate a definition for a topological spectral action.

Summary

We haven't generated a summary for this paper yet.