Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Applying dissipative dynamical systems to pseudorandom number generation: Equidistribution property and statistical independence of bits at distances up to logarithm of mesh size (1008.4874v3)

Published 28 Aug 2010 in physics.comp-ph and cs.MS

Abstract: The behavior of a family of dissipative dynamical systems representing transformations of two-dimensional torus is studied on a discrete lattice and compared with that of conservative hyperbolic automorphisms of the torus. Applying dissipative dynamical systems to generation of pseudorandom numbers is shown to be advantageous and equidistribution of probabilities for the sequences of bits can be achieved. A new algorithm for generating uniform pseudorandom numbers is proposed. The theory of the generator, which includes proofs of periodic properties and of statistical independence of bits at distances up to logarithm of mesh size, is presented. Extensive statistical testing using available test packages demonstrates excellent results, while the speed of the generator is comparable to other modern generators.

Citations (5)

Summary

We haven't generated a summary for this paper yet.