Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nilpotent Gelfand pairs and spherical transforms of Schwartz functions II. Taylor expansion on singular sets (1008.4699v2)

Published 27 Aug 2010 in math.AC, math.FA, and math.RT

Abstract: This paper is a continuation of [8], in the direction of proving the conjecture that the spherical transform on a nilpotent Gelfand pair (N,K) establishes an isomorphism between the space of K-invariant Schwartz functions on N and the space of Schwartz functions restricted to the Gelfand spectrum properly embedded in a Euclidean space. We prove a result, of independent interest for the representation theoretical problems that are involved, which can be viewed as a generalised Hadamard lemma for K-invariant functions on N. The context is that of nilpotent Gelfand pairs satisfying Vinberg's condition. This means that the Lie algebra n of N (which is step 2) decomposes as a direct sum of [n,n] and a K-invariant irreducible subspace.

Citations (5)

Summary

We haven't generated a summary for this paper yet.