Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Direct Data Domain STAP using Sparse Representation of Clutter Spectrum (1008.4184v1)

Published 25 Aug 2010 in cs.IT and math.IT

Abstract: Space-time adaptive processing (STAP) is an effective tool for detecting a moving target in the airborne radar system. Due to the fast-changing clutter scenario and/or non side-looking configuration, the stationarity of the training data is destroyed such that the statistical-based methods suffer performance degradation. Direct data domain (D3) methods avoid non-stationary training data and can effectively suppress the clutter within the test cell. However, this benefit comes at the cost of a reduced system degree of freedom (DOF), which results in performance loss. In this paper, by exploiting the intrinsic sparsity of the spectral distribution, a new direct data domain approach using sparse representation (D3SR) is proposed, which seeks to estimate the high-resolution space-time spectrum with only the test cell. The simulation of both side-looking and non side-looking cases has illustrated the effectiveness of the D3SR spectrum estimation using focal underdetermined system solution (FOCUSS) and norm minimization. Then the clutter covariance matrix (CCM) and the corresponding adaptive filter can be effectively obtained. Since D3SR maintains the full system DOF, it can achieve better performance of output signal-clutter-ratio (SCR) and minimum detectable velocity (MDV) than current D3 methods, e.g., direct data domain least squares (D3LS). Thus D3SR is more effective against the range-dependent clutter and interference in the non-stationary clutter scenario.

Citations (150)

Summary

We haven't generated a summary for this paper yet.