Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Kernel induced random survival forests (1008.3952v1)

Published 24 Aug 2010 in stat.ML

Abstract: Kernel Induced Random Survival Forests (KIRSF) is a statistical learning algorithm which aims to improve prediction accuracy for survival data. As in Random Survival Forests (RSF), Cumulative Hazard Function is predicted for each individual in the test set. Prediction error is estimated using Harrell's concordance index (C index) [Harrell et al. (1982)]. The C-index can be interpreted as a misclassification probability and does not depend on a single fixed time for evaluation. The C-index also specifically accounts for censoring. By utilizing kernel functions, KIRSF achieves better results than RSF in many situations. In this report, we show how to incorporate kernel functions into RSF. We test the performance of KIRSF and compare our method to RSF. We find that the KIRSF's performance is better than RSF in many occasions.

Citations (3)

Summary

We haven't generated a summary for this paper yet.