Combinatorial Approximation Algorithms for MaxCut using Random Walks (1008.3938v1)
Abstract: We give the first combinatorial approximation algorithm for Maxcut that beats the trivial 0.5 factor by a constant. The main partitioning procedure is very intuitive, natural, and easily described. It essentially performs a number of random walks and aggregates the information to provide the partition. We can control the running time to get an approximation factor-running time tradeoff. We show that for any constant b > 1.5, there is an O(n{b}) algorithm that outputs a (0.5+delta)-approximation for Maxcut, where delta = delta(b) is some positive constant. One of the components of our algorithm is a weak local graph partitioning procedure that may be of independent interest. Given a starting vertex $i$ and a conductance parameter phi, unless a random walk of length ell = O(log n) starting from i mixes rapidly (in terms of phi and ell), we can find a cut of conductance at most phi close to the vertex. The work done per vertex found in the cut is sublinear in n.