Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hypercyclic operators on topological vector spaces (1008.3267v1)

Published 19 Aug 2010 in math.FA

Abstract: Bonet, Frerick, Peris and Wengenroth constructed a hypercyclic operator on the locally convex direct sum of countably many copies of the Banach space $\ell_1$. We extend this result. In particular, we show that there is a hypercyclic operator on the locally convex direct sum of a sequence ${X_n}_{n\in\N}$ of Fr\'echet spaces if and only if each $X_n$ is separable and there are infinitely many $n\in\N$ for which $X_n$ is infinite dimensional. Moreover, we characterize inductive limits of sequences of separable Banach spaces which support a hypercyclic operator.

Summary

We haven't generated a summary for this paper yet.