Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strongly Liftable Schemes and the Kawamata-Viehweg Vanishing in Positive Characteristic II (1008.3024v2)

Published 18 Aug 2010 in math.AG

Abstract: A smooth scheme X over a field k of positive characteristic is said to be strongly liftable, if X and all prime divisors on X can be lifted simultaneously over W_2(k). In this paper, first we prove that smooth toric varieties are strongly liftable. As a corollary, we obtain the Kawamata-Viehweg vanishing theorem for smooth projective toric varieties. Second, we prove the Kawamata-Viehweg vanishing theorem for normal projective surfaces which are birational to a strongly liftable smooth projective surface. Finally, we deduce the cyclic cover trick over W_2(k), which can be used to construct a large class of liftable smooth projective varieties.

Summary

We haven't generated a summary for this paper yet.