Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Particle-based likelihood inference in partially observed diffusion processes using generalised Poisson estimators (1008.2886v1)

Published 17 Aug 2010 in math.ST and stat.TH

Abstract: This paper concerns the use of the expectation-maximisation (EM) algorithm for inference in partially observed diffusion processes. In this context, a well known problem is that all except a few diffusion processes lack closed-form expressions of the transition densities. Thus, in order to estimate efficiently the EM intermediate quantity we construct, using novel techniques for unbiased estimation of diffusion transition densities, a random weight fixed-lag auxiliary particle smoother, which avoids the well known problem of particle trajectory degeneracy in the smoothing mode. The estimator is justified theoretically and demonstrated on a simulated example.

Summary

We haven't generated a summary for this paper yet.