Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linear Size Optimal q-ary Constant-Weight Codes and Constant-Composition Codes (1008.1611v1)

Published 10 Aug 2010 in cs.IT, cs.DM, math.CO, and math.IT

Abstract: An optimal constant-composition or constant-weight code of weight $w$ has linear size if and only if its distance $d$ is at least $2w-1$. When $d\geq 2w$, the determination of the exact size of such a constant-composition or constant-weight code is trivial, but the case of $d=2w-1$ has been solved previously only for binary and ternary constant-composition and constant-weight codes, and for some sporadic instances. This paper provides a construction for quasicyclic optimal constant-composition and constant-weight codes of weight $w$ and distance $2w-1$ based on a new generalization of difference triangle sets. As a result, the sizes of optimal constant-composition codes and optimal constant-weight codes of weight $w$ and distance $2w-1$ are determined for all such codes of sufficiently large lengths. This solves an open problem of Etzion. The sizes of optimal constant-composition codes of weight $w$ and distance $2w-1$ are also determined for all $w\leq 6$, except in two cases.

Citations (26)

Summary

We haven't generated a summary for this paper yet.