Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The complexity of conservative finite-valued CSPs (1008.1555v1)

Published 9 Aug 2010 in cs.CC

Abstract: We study the complexity of valued constraint satisfaction problems (VCSP). A problem from VCSP is characterised by a \emph{constraint language}, a fixed set of cost functions over a finite domain. An instance of the problem is specified by a sum of cost functions from the language and the goal is to minimise the sum. We consider the case of so-called \emph{conservative} languages; that is, languages containing all unary cost functions, thus allowing arbitrary restrictions on the domains of the variables. This problem has been studied by Bulatov [LICS'03] for ${0,\infty}$-valued languages (i.e. CSP), by Cohen~\etal\ (AIJ'06) for Boolean domains, by Deineko et al. (JACM'08) for ${0,1}$-valued cost functions (i.e. Max-CSP), and by Takhanov (STACS'10) for ${0,\infty}$-valued languages containing all finite-valued unary cost functions (i.e. Min-Cost-Hom). We give an elementary proof of a complete complexity classification of conservative finite-valued languages: we show that every conservative finite-valued language is either tractable or NP-hard. This is the \emph{first} dichotomy result for finite-valued VCSPs over non-Boolean domains.

Citations (7)

Summary

We haven't generated a summary for this paper yet.