Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Compressive Sensing over Graphs (1008.0919v1)

Published 5 Aug 2010 in cs.IT, cs.NI, and math.IT

Abstract: In this paper, motivated by network inference and tomography applications, we study the problem of compressive sensing for sparse signal vectors over graphs. In particular, we are interested in recovering sparse vectors representing the properties of the edges from a graph. Unlike existing compressive sensing results, the collective additive measurements we are allowed to take must follow connected paths over the underlying graph. For a sufficiently connected graph with $n$ nodes, it is shown that, using $O(k \log(n))$ path measurements, we are able to recover any $k$-sparse link vector (with no more than $k$ nonzero elements), even though the measurements have to follow the graph path constraints. We further show that the computationally efficient $\ell_1$ minimization can provide theoretical guarantees for inferring such $k$-sparse vectors with $O(k \log(n))$ path measurements from the graph.

Citations (124)

Summary

We haven't generated a summary for this paper yet.