Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting multiple change-points in general causal time series using penalized quasi-likelihood (1008.0054v1)

Published 31 Jul 2010 in math.ST and stat.TH

Abstract: This paper is devoted to the off-line multiple change-point detection in a semiparametric framework. The time series is supposed to belong to a large class of models including AR($\infty$), ARCH($\infty$), TARCH($\infty$),... models where the coefficients change at each instant of breaks. The different unknown parameters (number of changes, change dates and parameters of successive models) are estimated using a penalized contrast built on conditional quasi-likelihood. Under Lipshitzian conditions on the model, the consistency of the estimator is proved when the moment order $r$ of the process satisfies $r\geq 2$. If $r\geq 4$, the same convergence rates for the estimators than in the case of independent random variables are obtained. The particular cases of AR($\infty$), ARCH($\infty$) and TARCH($\infty$) show that our method notably improves the existing results.

Summary

We haven't generated a summary for this paper yet.