Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A family of non-cocycle conjugate E_0-semigroups obtained from boundary weight doubles (1007.4459v1)

Published 26 Jul 2010 in math.OA and math.FA

Abstract: We have seen that if \phi: M_n(\C) \rightarrow M_n(\C) is a unital q-positive map and \nu is a type II Powers weight, then the boundary weight double (\phi, \nu) induces a unique (up to conjugacy) type II_0 E_0-semigroup. Let \phi: M_n(\C) \rightarrow M_n(\C) and \psi: M_{n'}(\C) \rightarrow M_{n'}(\C) be unital rank one q-positive maps, so for some states \rho \in M_n(\C)* and \rho' \in M_{n'}(\C)*, we have \phi(A)=\rho(A)I_n and \psi(D) = \rho'(D)I_{n'} for all A \in M_n(\C) and D \in M_{n'}(\C). We find that if \nu and \eta are arbitrary type II Powers weights, then (\phi, \nu) and (\psi, \eta) induce non-cocycle conjugate E_0-semigroups if \rho and \rho' have different eigenvalue lists. We then completely classify the q-corners and hyper maximal q-corners from \phi to \psi, obtaining the following result: If \nu is a type II Powers weight of the form \nu(\sqrt{I - \Lambda(1)} B \sqrt{I - \Lambda(1)})=(f,Bf), then the E_0-semigroups induced by (\phi,\nu) and (\psi, \nu) are cocycle conjugate if and only if n=n' and \phi and \psi are conjugate.

Summary

We haven't generated a summary for this paper yet.