Hom-power associative algebras
Abstract: A generalization of power associative algebra, called Hom-power associative algebra, is studied. The main result says that a multiplicative Hom-algebra is Hom-power associative if and only if it satisfies two identities of degrees three and four. It generalizes Albert's result that power associativity is equivalent to third and fourth power associativity. In particular, multiplicative right Hom-alternative algebras and non-commutative Hom-Jordan algebras are Hom-power associative.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.