Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Golod-Shafarevich inequality for Hilbert series of quadratic algebras and the Anick conjecture (1007.3944v1)

Published 22 Jul 2010 in math.RA and math.QA

Abstract: We study the question on whether the famous Golod-Shafarevich estimate, which gives a lower bound for the Hilbert series of a (noncommutative) algebra, is attained. This question was considered by Anick in his 1983 paper 'Generic algebras and CW-complexes', Princeton Univ. Press., where he proved that the estimate is attained for the number of quadratic relations $d \leq \frac{n2}{4}$ and $d \geq \frac{n2}{2}$, and conjectured that this is the case for any number of quadratic relations. The particular point where the number of relations is equal to $ \frac{n(n-1)}{2}$ was addressed by Vershik. He conjectured that a generic algebra with this number of relations is finite dimensional. We prove that over any infinite field, the Anick conjecture holds for $d \geq \frac{4(n2+n)}{9}$ and arbitrary number of generators $n$, and confirm the Vershik conjecture over any field of characteristic 0. We give also a series of related asymptotic results.

Summary

We haven't generated a summary for this paper yet.