Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characterization of Graph-cover Pseudocodewords of Codes over $F_3$ (1007.3808v1)

Published 22 Jul 2010 in cs.IT and math.IT

Abstract: Linear-programming pseudocodewords play a pivotal role in our understanding of the linear-programming decoding algorithms. These pseudocodewords are known to be equivalent to the graph-cover pseudocodewords. The latter pseudocodewords, when viewed as points in the multidimensional Euclidean space, lie inside a fundamental cone. This fundamental cone depends on the choice of a parity-check matrix of a code, rather than on the choice of the code itself. The cone does not depend on the channel, over which the code is employed. The knowledge of the boundaries of the fundamental cone could help in studying various properties of the pseudocodewords, such as their minimum pseudoweight, pseudoredundancy of the codes, etc. For the binary codes, the full characterization of the fundamental cone was derived by Koetter et al. However, if the underlying alphabet is large, such characterization becom is more involved. In this work, a characterization of the fundamental cone for codes over $F_3$ is discussed.

Citations (9)

Summary

We haven't generated a summary for this paper yet.