Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Caractères tordus des représentations admissibles (1007.3576v3)

Published 21 Jul 2010 in math.RT

Abstract: Let $F$ be a non--Archimedean locally compact field (${\rm car}(F)\geq 0$), ${\bf G}$ be a connected reductive group defined over $F$, $\theta$ be an $F$--automorphism of ${\bf G}$, and $\omega$ be a character of ${\bf G}(F)$. We fix a Haar measure $dg$ on ${\bf G}(F)$. For a smooth irreducible $(\theta,\omega)$--stable complex representation $\pi$ of ${\bf G}(F)$, that is such that $\pi\circ \theta\simeq \pi\otimes \omega$, the choice of an isomorphism $A$ from $\pi\otimes \omega$ to $\pi\circ \theta$ defines a distribution $\Theta_\piA$, called the \og ($A$--)twisted character of $\pi$\fg: for a compactly supported locally constant function $f$ on ${\bf G}(F)$, we put $\Theta_\piA(f)={\rm trace}(\pi(fdg)\circ A)$. In this paper, we study these distributions $\Theta_\piA$, without any restrictive hypothesis on $F$, ${\bf G}$ or $\theta$. We prove in particular that the restriction of $\Theta_\piA$ on the open dense subset of ${\bf G}(F)$ formed of those elements which are $\theta$--quasi--regular is given by a locally constant function, and we describe how this function behaves with respect to parabolic induction and Jacquet restriction. This leads us to take up again the Steinberg theory of automorphisms of an algebraic group, from a rationnal point of view.

Summary

We haven't generated a summary for this paper yet.