Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The gamma-filtration and the Rost invariant (1007.3482v2)

Published 20 Jul 2010 in math.AG and math.GR

Abstract: Let X be the variety of Borel subgroups of a simple and strongly inner linear algebraic group G over a field k. We prove that the torsion part of the second quotient of Grothendieck's gamma-filtration on X is a cyclic group of order the Dynkin index of G. As a byproduct of the proof we obtain an explicit cycle that generates this cyclic group; we provide an upper bound for the torsion of the Chow group of codimension-3 cycles on X; we relate the generating cycle with the Rost invariant and the torsion of the respective generalized Rost motives; we use this cycle to obtain a uniform lower bound for the essential dimension of (almost) all simple linear algebraic groups.

Summary

We haven't generated a summary for this paper yet.