2000 character limit reached
The gamma-filtration and the Rost invariant (1007.3482v2)
Published 20 Jul 2010 in math.AG and math.GR
Abstract: Let X be the variety of Borel subgroups of a simple and strongly inner linear algebraic group G over a field k. We prove that the torsion part of the second quotient of Grothendieck's gamma-filtration on X is a cyclic group of order the Dynkin index of G. As a byproduct of the proof we obtain an explicit cycle that generates this cyclic group; we provide an upper bound for the torsion of the Chow group of codimension-3 cycles on X; we relate the generating cycle with the Rost invariant and the torsion of the respective generalized Rost motives; we use this cycle to obtain a uniform lower bound for the essential dimension of (almost) all simple linear algebraic groups.