Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Curved A-infinity algebras and Landau-Ginzburg models (1007.2679v2)

Published 15 Jul 2010 in math.KT, math.AC, math.AG, and math.RA

Abstract: We study the Hochschild homology and cohomology of curved A-infinity algebras that arise in the study of Landau-Ginzburg (LG) models in physics. We show that the ordinary Hochschild homology and cohomology of these algebras vanish. To correct this we introduce modified versions of these theories, Borel-Moore Hochschild homology and compactly supported Hochschild cohomology. For LG models the new invariants yield the answer predicted by physics, shifts of the Jacobian ring. We also study the relationship between graded LG models and the geometry of hypersurfaces. We prove that Orlov's derived equivalence descends from an equivalence at the differential graded level, so in particular the CY/LG correspondence is a dg equivalence. This leads us to study the equivariant Hochschild homology of orbifold LG models. The results we get can be seen as noncommutative analogues of the Lefschetz hyperplane and Griffiths transversality theorems.

Summary

We haven't generated a summary for this paper yet.