Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequential Sparsening by Successive Adaptation in Neural Populations (1007.2345v1)

Published 14 Jul 2010 in physics.bio-ph and q-bio.NC

Abstract: In the principal cells of the insect mushroom body, the Kenyon cells (KC), olfactory information is represented by a spatially and temporally sparse code. Each odor stimulus will activate only a small portion of neurons and each stimulus leads to only a short phasic response following stimulus onset irrespective of the actual duration of a constant stimulus. The mechanisms responsible for the sparse code in the KCs are yet unresolved. Here, we explore the role of the neuron-intrinsic mechanism of spike-frequency adaptation (SFA) in producing temporally sparse responses to sensory stimulation in higher processing stages. Our single neuron model is defined through a conductance-based integrate-and-fire neuron with spike-frequency adaptation [1]. We study a fully connected feed-forward network architecture in coarse analogy to the insect olfactory pathway. A first layer of ten neurons represents the projection neurons (PNs) of the antenna lobe. All PNs receive a step-like input from the olfactory receptor neurons, which was realized by independent Poisson processes. The second layer represents 100 KCs which converge onto ten neurons in the output layer which represents the population of mushroom body extrinsic neurons (ENs). Our simulation result matches with the experimental observations. In particular, intracellular recordings of PNs show a clear phasic-tonic response that outlasts the stimulus [2] while extracellular recordings from KCs in the locust express sharp transient responses [3]. We conclude that the neuron-intrinsic mechanism is can explain a progressive temporal response sparsening in the insect olfactory system. Further experimental work is needed to test this hypothesis empirically. [1] Muller et. al., Neural Comput, 19(11):2958-3010, 2007. [2] Assisi et. al., Nat Neurosci, 10(9):1176-1184, 2007. [3] Krofczik et. al. Front. Comput. Neurosci., 2(9), 2009.

Summary

We haven't generated a summary for this paper yet.